Role of osmotic and hydrostatic pressures in bacteriophage genome ejection.
نویسندگان
چکیده
A critical step in the bacteriophage life cycle is genome ejection into host bacteria. The ejection process for double-stranded DNA phages has been studied thoroughly in vitro, where after triggering with the cellular receptor the genome ejects into a buffer. The experimental data have been interpreted in terms of the decrease in free energy of the densely packed DNA associated with genome ejection. Here we detail a simple model of genome ejection in terms of the hydrostatic and osmotic pressures inside the phage, a bacterium, and a buffer solution or culture medium. We argue that the hydrodynamic flow associated with the water movement from the buffer solution into the phage capsid and further drainage into the bacterial cytoplasm, driven by the osmotic gradient between the bacterial cytoplasm and culture medium, provides an alternative mechanism for phage genome ejection in vivo; the mechanism is perfectly consistent with phage genome ejection in vitro.
منابع مشابه
Dynamics of bacteriophage genome ejection in vitro and in vivo.
Bacteriophages, phages for short, are viruses of bacteria. The majority of phages contain a double-stranded DNA genome packaged in a capsid at a density of ∼500 mg ml(-1). This high density requires substantial compression of the normal B-form helix, leading to the conjecture that DNA in mature phage virions is under significant pressure, and that pressure is used to eject the DNA during infect...
متن کاملThe effect of genome length on ejection forces in bacteriophage lambda.
A variety of viruses tightly pack their genetic material into protein capsids that are barely large enough to enclose the genome. In particular, in bacteriophages, forces as high as 60 pN are encountered during packaging and ejection, produced by DNA bending elasticity and self-interactions. The high forces are believed to be important for the ejection process, though the extent of their involv...
متن کاملOsmotic pressure inhibition of DNA ejection from phage.
Bacterial viral capsids in aqueous solution can be opened in vitro by addition of their specific receptor proteins, with consequent full ejection of their genomes. We demonstrate that it is possible to control the extent of this ejection by varying the external osmotic pressure. In the particular case of bacteriophage lambda, the ejection is 50% inhibited by osmotic pressures (of polyethylene g...
متن کاملEffects of salt concentrations and bending energy on the extent of ejection of phage genomes.
Recent work has shown that pressures inside dsDNA phage capsids can be as high as many tens of atmospheres; it is this pressure that is responsible for initiation of the delivery of phage genomes to host cells. The forces driving ejection of the genome have been shown to decrease monotonically as ejection proceeds, and hence to be strongly dependent on the genome length. Here we investigate the...
متن کاملP-28: Hydrostatic Pressure Induced Cell Deathin Cumulus Cells and Improved In vitro Maturationof Oocytes from Preovulatory Follicles
Background: Cryopreservation of ovaries is an important technique in assisted reproduction technology. Physical forces like hydrostatic pressure have a pivotal role in reproduction systems. Due to changes in intrafollicular pressure during ovulatory process, this study designed to examine the effects of hydrostatic pressure on oocyte maturation and cell death in cumulus cells from cryopreserved...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 87 2 شماره
صفحات -
تاریخ انتشار 2013